Air Force expeditionary energy demo forges ahead

  • Published
  • By Donna Lindner
  • Air Force Research Laboratory
WRIGHT-PATTERSON AIR FORCE BASE, Ohio --  Today’s expeditionary military forces require steady, reliable energy sources to power the mission worldwide. Diverse field environments and a move towards cost effective, resilient and agile energy supplies are driving a new look at the way the Department of Defense powers a mission—and the Air Force Research Laboratory’s Advanced Power Technology Office leads the innovation from the front.

 

The APTO Forward Operating Base of the Future project plays a critical role in changing the way forward deployed forces will power missions in the future. The on-going project hopes to meet the Air Force Civil Engineering Center’s 2035 vision to create a totally deployable, self-sustaining power system. Progress over the past year has been enormous, resulting in new cross-service collaborations, successful equipment demonstrations and more.

 

“We learned a lot over the past year,” said 1st Lt. Jason Goins, project engineer. “We demonstrated feasibility and where to go next in terms of making complete microgrid systems. Pieces of individual equipment have been demonstrated separately, and by combining them into a microgrid, we learned how well they worked synergistically.”

 

Housed in a 10 foot long trailer, a mobile, hybrid energy storage and management system able to supply renewable energy power for Forward Operating Bases is the latest addition to the APTO-led effort to meet long term energy needs of military forces. Batteries and a microgrid command, control and communication software package can act as a power source, better able to supply on-site, mobile energy for expeditionary forces.

 

“We are taking what we learned and applying it to a rapidly deployable system,” said Goins. “We are looking at something that will be set up and deployed in an hour. If you can power a shelter in 30 minutes with affordable solar and wind, that’s spectacular.”

 

In addition to providing a reliable, steady source of power, the team is exploring solar panels that can be shot by a bullet and still remain operational.

 

The team is also working with industry to create a lightweight wind power package. This would employ a ground-based system with a bladed turbine that can be cranked up into the air to generate wind power.

 

The trailer’s open software system and architecture has played a critical role in enabling cross-service collaboration with the Army. The Army’s Research, Development and Engineering Command Communications-Electronics Research, Development and Engineering Center is performing joint testing and development of the mobile energy management system trailer.  They will use those results to develop their Tactical Microgrid Standards.


In the coming months/years, the team plans to continue its partnership with the Army and look at ways they can collaborate on developing standard policies and equipment for microgrids – be alert for opportunities to leverage industry advancements in alternative power technology.

 

Former Secretary of the Air Force Deborah Lee James attended the kickoff for the project in 2016 and said that through renewable and advanced energy technologies the Air Force can ensure its bases have the power to execute their missions, even when traditional energy resources are disrupted.