THE FOLLOWING KEY WORDS WILL SEARCH BY THOSE CATEGORIES: BASE EVENTS; BASE EXERCISES; PEOPLE, WPAFB IN THE COMMUNITY
Only 100 pages of images will display. Consider refining search terms for better results.
AFRL Lab Life Podcast
Maj. Gen. William Cooley, commander of the Air Force Research Laboratory, joins AFRL Lab Life podcast co-hosts, Kenneth McNulty and Michele Miller at the Lab Life podcast booth on the floor of the Air Force Association's Air, Space, and Cyber conference exhibit area during the 2019 Air, Space, and Cyber conference. Cooley joined other senior Air Force leaders as guests on the podcast, sharing views on Air Force science and technology growth. (Courtesy photo)
AFRL erosion testing is out of this world
The AFRL Materials and Manufacturing Directorate Erosion Team conducted a series of coatings durability tests for NASA’s Mars 2020 rover, pictured here in an artist’s rendition. (Photo courtesy of NASA/JPL-Caltech)
Origami may be key to complex Air Force needs
Researchers at the Air Force Research Laboratory are exploring origami concepts in relation to science, physics, mathematics and engineering to create new solutions for the Air Force. This image shows a printed frequency selective surface up close. Folding enables deployment and operational tunability. (Courtesy photo)
Origami may be key to complex Air Force needs
Researchers at the Air Force Research Laboratory are exploring origami concepts in relation to science, physics, mathematics and engineering to create new solutions for the Air Force. This image shows a folded frequency selective surface composed of printed spirals on a polypropylene substrate, where a Miura-ori fold pattern has been imprinted through laser scoring. Folding enables deployment and operational tunability. (Courtesy photo)
Origami may be key to complex Air Force needs
Researchers at the Air Force Research Laboratory are exploring origami concepts in relation to science, physics, mathematics and engineering to create new solutions for the Air Force. This image is a close-up view of a folded frequency selective surface composed of printed spirals on a polypropylene substrate, where a Miura-ori fold pattern has been imprinted through laser scoring. Folding enables deployment and operational tenability. (Courtesy photo)
AFRL’s advanced multi-junction solar cells deliver high efficiency, reduced costs for space
Inverted Metamorphic Multi-Junction (IMM) Solar Cells are a more efficient and lighter weight alternative to the state-of-practice multi-junction space solar cells. A collaboration between the Air Force Research Laboratory, the U.S. government and industry has led to refinement of the IMM solar cell growth process, ensuring high yield, efficient solar cell production through industrial manufacturing optimization. (SolAero Technologies Courtesy Photo)
AFRL’s advanced multi-junction solar cells deliver high efficiency, reduced costs for space
Inverted Metamorphic Multi-Junction (IMM) Solar Cells are a more efficient and lighter weight alternative to the state-of-practice multi-junction space solar cells. A collaboration between the Air Force Research Laboratory, the U.S. government and industry has led to refinement of the IMM solar cell growth process, ensuring high yield, efficient solar cell production through industrial manufacturing optimization.(SolAero Technologies Courtesy Photo)